On AIRS and Clonal Selection for Machine Learning
نویسندگان
چکیده
AIRS is an immune-inspired supervised learning algorithm that has been shown to perform competitively on some common datasets. Previous analysis of the algorithm consists almost exclusively of empirical benchmarks and the reason for its success remains somewhat speculative. In this paper, we decouple the statistical and immunological aspects of AIRS and consider their merits individually. This perspective allows us to clarifying why AIRS performs as it does and identify deficiencies that leave AIRS lacking. A comparison with Radial Basis Functions suggests that each may have something to offer the other.
منابع مشابه
Exploiting immunological metaphors in the development of serial, parallel and distributed learning algorithms
This thesis examines the use of immunological metaphors in building serial,parallel, and distributed learning algorithms. It offers a basic study in thedevelopment of biologically-inspired algorithms which merge inspiration frombiology with known, standard computing technology to examine robust methodsof computing. This thesis begins by detailing key interactions found within th...
متن کاملOn clonal selection
Clonal selection has been a dominant theme in many immune-inspired algorithms applied to machine learning and optimisation. We examine existing clonal selections algorithms for learning from a theoretical and empirical perspective and assert that the widely accepted computational interpretation of clonal selection is compromised both algorithmically and biologically. We suggest a more capable a...
متن کاملArtificial Immune Recognition System (airs) a Review and Analysis
The natural immune system is a robust and powerful information process system that demonstrates features such as distributed control, parallel processing and adaptation or learning via experience. Artificial Immune Systems (AIS) are machine-learning algorithms that embody some of the principles and attempt to take advantages of the benefits of natural immune systems for use in tackling complex ...
متن کاملPattern Recognition using Artificial Immune System
In this thesis, the uses of Artificial Immune Systems (AIS) in Machine learning is studded. the thesis focus on some of immune inspired algorithms such as clonal selection algorithm and artificial immune network. The effect of changing the algorithm parameter on its performance is studded. Then a new immune inspired algorithm for unsupervised classification is proposed. The new algorithm is bas...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کامل